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The dynamics of periodically driven quantum systems coupled to a thermal environment is investigated. The
interaction of the system with the external coherent driving field is taken into account exactly by making use
of the Floquet picture. Treating the coupling to the environment within the Born-Markov approximation one
finds a Pauli-type master equation for the diagonal elements of the reduced density matrix in the Floquet
representation. The stationary solution of the latter yields a quasistationary, time-periodic density matrix which
describes the long-time behavior of the system. Taking the example of a periodically driven particle in a box,
the stationary solution is determined numerically for a wide range of driving amplitudes and temperatures. It is
found that the quasistationary distribution differs substantially from a Boltzmann-type distribution at the
temperature of the environment. For large driving fields it exhibits a plateau region describing a nearly constant
population of a certain number of Floquet states. This number of Floquet states turns out to be nearly inde-
pendent of the temperature. The plateau region is sharply separated from an exponential tail of the stationary
distribution which expresses a canonical Boltzmann-type distribution over the mean energies of the Floquet
states. These results are explained in terms of the structure of the matrix of transition rates for the dissipative
guantum system. Investigating the corresponding classical, nonlinear Hamiltonian system, one finds that in the
semiclassical range essential features of the quasistationary distribution can be understood from the structure of
the underlying classical phase space.

PACS numbse(s): 05.70.Ln, 03.65.Sq, 02.50.Ga

I. INTRODUCTION We shall perform analytical and numerical investigations
of the stationary solution of the Pauli master equation for a
Within the Born-Markov approximation, autonomous general class of periodically driven, nonlinear oscillators
open quantum systems are described by quantum dynamice®upled to an environment at finite temperature. Our results
semigroups with a time-independent Lindblad genergtgr  reveal that a large class of Hamiltonian systems leads to a
Under quite general physical conditions such systems rela¥hique, quasistationary density matrix which is diagonal in
in the long-time limit to a unique stationary state, which is the Floguet representation. The structure of the quasistation-
given by the principles of equilibrium statistical mechanics@'y distribution will be discussed in detail. We shall also
[2]. For example, requiring the condition of detailed balance>tudy the connections to the phase flow of the corresponding
for the transition rates and some kind of ergodic propert)f“lass'Cal Hamlltqnlan system, Wh.'Ch shows a sharp di-
regarding the operators which describe the coupling of thé:hotomy of quasiregular and chaotic motion.
system to its environment, one finds an equilibrium station-

ary state which is given by the Boltzmann distribution over IIl. MASTER EQUATION FOR OPEN QUANTUM

the energy eigenvalues of the system. SYSTEMS IN STRONG DRIVING FIELDS
For open quantum systems in time-varying external fields,

the quantum dynamics must be described, in general, by a  A. The density matrix in the Floquet representation

time-dependent generator. In the case in which the external We consider in the f0||owing a periodica”y driven guan-
driving field is strong, one expects that the long-time dynam+tum system coupled to an environment at temperafufer
ics differs significantly from the equilibrium stationary state. a review, see Ref7]). The coherent part of the dynamics is
In this paper, we shall investigate the question of the exisgenerated by some Hamiltoniat(t) which is periodic in
tence and the basic properties of a certain quasistationatime with frequencyw, , that is, we haveHd (t+ T, ) =H(t),
state which governs the long-time behavior for systems irwhere T =2m/w, denotes the period. Usuallyi(t) takes
strong, time-periodic driving fields. the form H(t)=Hy+H,(t), whereH, is the unperturbed
In our study, the interaction with the external field will be system Hamiltonian anHl,(t) represents a time-periodic in-
treated exactly using the Floquet representation for timeteraction with an external driving field.
periodic quantum systeni8,4], whereas the coupling to en-  According to the Floquet theoreif8,4], there exists a
vironment will be taken into account in the Born-Markov basis of T -periodic wave functionss;(t)=u;(t+T.), the
approximation. It is known that for this case the diagonalFloquet states, such that any solutigift) of the time-
elements of the reduced density matrix in the Floquet repredependent Schdinger equation pertaining to the Hamil-
sentation obey a closed equation of motion which is formallytonianH(t) can be represented in the fome choose units
equivalent to a Pauli-type master equatjér-7]. such thath =1)
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. ﬁa)_l -1 f >0,
p(t)=", aje =it (t). Nw)= (_e ) o w
: N(—w)+1, for w<O,

The quantitys; is the Floquet index or quasienergy corre- here g=1/kgT, T is the temperature of the environment,
sponding to the Floquet statg(t). The important pointto g ks denotes the Boltzmann constant.
note is that the amplitudes in the above representation are

independent of time.

In principle, the coupling to the environment may take
any form. To be specific, we take this interaction to be of Any master equation of the forit2) has at least one sta-
dipole form, that is, the relevant system operator whichtionary solutionpj* [9]. This is due to the fact that the matrix
couples to the degrees of the environment is the dipole opw;, has always a left eigenvector (1,1,1.) belonging to
eratorD. Such a coupling occurs, for example, in atomic orthe eigenvalue zero. The corresponding right eigenveztor
quantum optical systems where the environment could be thghen fulfills Wp* =0, and, when normalized, is a stationary
quantized radiation field in thermal equilibriuh,8]. Invok-  solution of the master equation.
ing the Floquet representation, one finds that the dynamics of Once we have determined a stationary distributix}Snof

B. The quasistationary solution

the diagonal matrix elements the Pauli-type master equati¢®), we immediately obtain a
_ solution p* (t) of the corresponding density-matrix equation
pi(H)=(u;(O]p(t) u;(t)) (1) which is diagonal in the Floquet representation and which is

of the reduced density operatp(t) of the open system is given in the Schrdinger picture by

governed by the following Pauli master equation in the
strong driving limit; p* ()= |uj(0)pF(u;(v)]. (6)
I

aIOJ.(»[)ZZ {ijpk(t)_wkjpj(t)}EE Wkp(t). (2) Th_ls equ_athn represents a dens[ty rr_1atr|x which varies peri-

k k odically in time with a period which is equal to that of the
external driving field. For this reason the stationary solution
p}* of the Pauli-type master equation may be caliggsis-

([]ationary.

This equation may be derived directly within the density-
matrix formulation[5] or else by making use of the stochas-

tic wave-function method and by investigating the associate - L ;
jump procesg6]. In both cases, one uses the Born-Markov An important question is whether the diagonal part of any

aporoximation for the counling of the reduced svstem to it initial density matrix converges for large times to the quasis-

pproximat upling of u sSystem 1ol S[ationary solution. For this to be the case, the stationary so-

environment, whereas the coupling to the driving field 'S|ution p¥ of the Pauli master equation must be unique, which
J 1

treated exactly by invoking the Floquet representation of the . . )
time-evolution operator. means that the Pauli master equation must be irredui@hle

Formally, Eq.(2) represents an ordinary master equationA S!r.“"'f’“ cqndmon 1S used n the study of the return (o
in the sense of classical probability theory for a stochasticequ'l'tbrlum '? relaxing semigroups of autonomous open
jump proces$9]. The quantityw,; is the rate(probability per quia:n um sys ?m&t]' the determinai f th ist

unit of time) for a jump from the Floquet statg(t) into the or general ratesy; the determination ot the quasista-

: o o
Floquet stateu,(t). For dipole coupling, these rates are t|o?ary S°|Ut'°2pi _ca}n bet a difficult tasl:. It—|hovtvever_, f_(t)_r Iant i
given by the explicit expressiois] autonomous physical system one expects that any initial state

relaxes to a state which is in thermal equilibrium with the
_ environment. Thus, without external driving, the stationary
Wi = 2 Wjm= > Y(@gm)N(@kjm)| D2 (3)  solution of Eq.(2) should represent a canonical distribution
m m over the energy eigenvalues of the unperturbed system
Here, the sum is to be extended over all integersvhich HamiltonianH,. It is instructive for the considerations be-
label the Fourier mode®,y, of the time-periodic dipole low to r_ecall briefly the basic arguments .WhICh lead to th!s
matrix elementu,(t)|D|u;(t)) conclusion. For an autonomous system without external driv-
k N ing field, the master equation is of the same form as(By.
T.dt . where, however, the transition rates are given by
Dyjm= Jo T—Le_'met<Uk(t)|D|Uj(t)>- (4) ; B ,
Wi = Y(@i)N(@)[ Dy “.
The wyj, denote the corresponding transition frequencies . . . .
which are given though differences of quasienergies plus inT he transition frequencies are now obtained as differences of

teger multiples ofw, unperturbed energy eigenvaluesy;=e—¢;, and Dy,
=(¢«|D|¢;) is the dipole matrix element between the corre-
Okjm=Ek— €]+ My . (5) sponding eigenstates, and ¢; of Hy. According to general

principles of statistical mechani¢8], the stationary equilib-
Finally, y(w)=y(— ) denotes the density of modes of the rium distributionp;* of a closed physical system obeys the
environment belonging to the frequeney For w>0, N(w) condition of detailed balance which is given tyyﬁjpj*
is the Planck distribution for the quanta of frequengyFor zwfkp;‘ . The crucial point is that the ratem?j for the au-
the sake of a compact notation we define tonomous system do not involve a sum over the index
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which labels the Fourier components in E§). Therefore,
the density of the modes of the environment as well as the % Wikijm % Wikijm

dipole matrix element drop out when one forms the ratio Wi _

o =
Ik %ijm %ij,—m

W_Ej: N(wkj)

— =g~ Bk (7
O N(wyg)+1 ’ N 2
Wik ] Zn: Y(@kjm)N(@kjm) | Dijml
where we assume@without restriction that w,;>0. As can - , ©
wk] . . W _ . D.: 2
be seen immediately, the solutig¥i of the detailed balance % #(@xm)N(= @igm) | Dil

condition yields, as expected, the canonical distribu;ixqﬁn )
= Nexp(-Be{), where N is a normalization factor. This is where we have used the ielat'omjkfm:_“’kj,fm'
the usual argument employed in statistical mechanics, den(~ @) =7¥(®), and Dj,-m=Djj ,m, which are valid by
onstrating that the system relaxes to a stationary equilibriur§€finition. o _
state which is given by the canonical distribution over the In the case of strong driving, many Fourier modes of the
unperturbed energy eigenvalues at the given temperature Floquet wave functions are excited with appreciable ampli-
of the environment. tude. This means thaD,;,|* may be appreciably different

It is interesting to observe that a similar argument applie§rom zero for manym’s which label these modes. Equation
also to another case, namely the periodically driven hart9) therefore shows that the ratig;/wj, of transition rates
monic oscillator with system Hamiltonian, differs significantly from the simple relatiofi7), which is
valid in the zero driving limit. Therefore, the simple line of
reasoning leading to a stationary state given by a canonical
distribution does not apply in the present case. In the next
section we shall investigate numerically the properties of the
quasistationary distributiorpj* of the Pauli-type master
In this case one obtairf§] equation for the case of a nonlinear, strongly driven oscilla-

tor.

1 1
H(t)= sz"‘ E,uw%x2+ AXSinwt.

Digjm= mol 8+ 1x\i + 1+ 8 1] 1 Ill. NUMERICAL SIMULATIONS
' B -4 2 "
m@o A. Model system and numerical methods

As an example for a strongly anharmonic system, we con-
sider a periodically driven particle in a potential box. The
time-dependent Hamiltonian is given by

This expression shows that for—k|#1 the ratesw,; van-
ish. For|j—k|=1, however, only the terrm=0 in Eq. (3)
is different from zero. This is a very specific property which

is valid only for harmonic potentials. Thus, the dipole opera- 1 o2
tor couples only neighboring Floquet states(t) and H(t)=— =— — +V(X) +AXsinw,t, (10)
Uj-1(t) and the expression for the rateg; involves only a 2p dx?

single Fourier component, as is the case for an autonomous )
system. On using the same arguments as above, we therefd¥ere the potentiaV/(x) reads

get the following quasistationary distribution: 0 for |x<a,

V(x)= (1)

p]*:Ne*,Bs,-, ®) +o  for |x|>a.

Scaling space, time, and momentum coordinates as

whereg; is the quasienergy spectrum of the harmonic oscil-
lator (see, e.g.[10]). Note that the quasienergies of the ;(:f f:th p=
driven harmonic oscillator differ from the unperturbed ener- a’ '
gies just by g-independent term. The quasienergies of the o ) ) o
harmonic oscillator are thus equidistant for &ll Equation the Schrdinger equation corresponding to the Hamiltonian
(8) implies that the stationary, nonequilibrium distribution of (10) can be written as
the driven oscillator is a canonical distribution over its L d L P
quaS|ene_rgy states, that is, t_he quasistationary density matrix i= Syl - U+ prsint !
p* (t) varies periodically in time with time-independent oc- a dt 242 dx?
cupation probabilities of the Floquet states. A more detailed
investigation of the dynamics of dissipative, periodically yhereV/(x)=V(ax)/ua2e? is the scaled potential and we
driven systems with quadratic potentials can be found inayve introduced the dimensionless parameters
Refs.[11,12.

We now turn to the case of a driven, nonlinear oscillator.
Instead of the simple relatiof¥), we have, in general, the a=palo , pB= >
following expression for the ratio of transition rates: paw

p
paw’

. (12
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The coherent part of the dynamics thus depends only upon

the two dimensionless parameters&ind 3. The parametef 0
is a dimensionless coupling constant which is proportional to
the field amplitude. The meaning of the parametenay be 1
seen by looking at the commutator of space and momentum ;
coordinate,[p,x]=—ia"!. Recall that we have sédi=1.
The quantitye ! is thus a dimensionless, scaled Planck con- -2 NN
- . . % \‘\\ S

stant. The limitae—o corresponds to the classical limit, log;o P: \\\§ §§ §§
whereas small values ot imply that quantum behavior J_3 K L\*\\K\\\, N
dominates in a certain region of the classical phase space \\ \QQ\‘\E&‘ E
[10]. |

The dissipative part of the dynamics introduces two fur- -4 \ B \Kt: \\; o
ther parameters, namely the density of modes and the tem- \ \ \ ) N\\k |
perature of the environment. For simplicity we chose a con- \ W
stant density of modesy(w)=17y,. 7y, determines the -5 N
relaxation time of the process but not the stationary solution. \ 5‘\
The latter only depends on the dimensionless temperature -6 \

0 10 20 E 30 40
j el (13) :
oL FIG. 1. Logarithmic plot of the quasistationary distributip]’ﬁ

for the open system with Hamiltonia¢l0) as a function of the
Thus, the stationary solutiqe{’ depends on three dimension- mean energy E; for different scaled temperaturesT
less parameters, namedy, 3, andT. =0.5,1.0,1.5...,8.0 (symbolg. The lines represent a linear fit of
The numerical determination of the stationary distributionth® numerical data in the exponential region, which is found to be in
p]* over the Floguet states proceeds in three steps as fOHOW_g)_(cellent agreement with a Boltzmann-type distribution correspond-

(i) Determination of the quasienergies and Floquet wavdnd to the various temperatures. The plateau region_as well as the
functions pertaining to the Hamiltonigd0). temperature independence of the mean transition ereggwhich
(i) Calculation of the Fourier Componenﬂikjm of the separates both regions are also clearly seen. The parameters are

dipole operator and determination of the matwik of the ~ ~ 20 £=0.248,N=32, andmpa.=2048.
master equatiof2).
(i) Determination of thenormalized right eigenvector ~Obtained by averaging the expectation value of the time-
pi of W corresponding to the eigenvector zero. dependent HamiltoniaH (t) in the Floquet states;(t) over
To perform step(i) we have represented the time- & period of the external field,
dependent Schdinger equation in a finite basis consisting T dt
of_N elgenfun_cnons _oiHQ. The Floquet spectrum is deter- Ej:f T—<Uj(t)|H(t)|Uj(t)>- (14)
mined by diagonalization of the monodromy operator o L
U(T.,0), that is, the time-evolution operatbi(t,t,) of the

time-dependent Schdinger equation taken over a period of \y/e display in Fig 1 a logarithmic plot of the stationary

the driving field. With the help of the Floquet states, O”edistributionspj* for a fixed driving amplitude of3=0.248

evaluates the time-dependent matrix elementsand for different scaled temperatures T
(uj(t)[D]u(t)) of the dipole operator. P

In step(ii) one determines the Fourier transform of the:0‘5’.1'0i1d5;['.t')’§[fo' As C?r? be seetn tl;ro(;n the flgureﬁ the
dipole matrix elements to obtain the Fourier componentscf"monlca IStribution over the unperturbed energies changes

Dy We denote bym... the number of sampling points significantly for strong driving fields. The most striking fea-
jm- max

which are used used in the numerical Fourier tranformationtU® IS that the stationary distributigpf exhibits two quali-

The Fourier components of the dipole matrix elements tolatively very different and clearly separated regions. In the

gether with the quasienergies determined in ¢tepield the (ISt region we have a number of states which are populated
ratesw,; and the matrix\V with an approximately constant probability. This region will

In stJep(iii) one has to find the zero mode of the matrix be called plateau region in.the following. For increasing
W. In all cases considered the lowest eigenvaluevsf Mean energy the plateau region goes over to a second region

turned out to be smaller than the other eigenvalues by ¥here pj clearly decays exponentially with the mean en-
factor of at least 10 This clearly excludes the possibility of €rgy- A similar conclusion was found in an investigation of

a degenerate zero mode, and of a decomposablmatrix ~ chaotic tunneling in a double-well potentfd3].

[9]. In all cases we thus have a unique stationary solution Figure 1 also demonstrates that the plateau region is sepa-
p* . rated from the exp_onentlal region by a sharp transition at
. some mean energl: which is nearly independent of the
temperature. The solid lines of Fig. 1 are obtained by a linear
fit of the numerical data in the exponential region. One finds
In the following we shall represent the stationary distribu-that the slopes of these lines are in perfect agreement with

tion p}* as a function of the mean energiE:f which are  the chosen scaled temperatufiesf the environment. In the

B. Numerical results and discussion
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FIG. 3. Poincaresurface of section for the strongly driven par-
ticle in the box for a scaled driving amplitude @=0.66. The
figure represents a family of solutions of the classical equations of
motion in the &,p) plane at timest=07T,,2T,,...,6007,,
whereT, denotes the period of the driving field.

FIG. 2. Representation of thél(< N)-matrix w,; formed by the ) .
various rates for the transition between the Floquet states for thgate the classical analog of the quantum system given by the
Hamiltonian (10). The matrix elementvg is found in the upper ~Hamiltonian(10). The classical phase flow generated by the
comer. The parameters ase=20, 3=0.418,T=4.5,N=32, and corresponding Ham|ltpn|an fun(_:t|or_1 is knqwn to be chaotic
M= 2048. and has been extensively studied in the literatses, e.g.,
[14,15).

exponential region the stationary distribution therefore rep- FOr strong driving fields, that is, for driving amplitudes
resents a canonical distribution over the mean energies of tHé&~ Sc Which are larger than the amplitugiz =0.0625 given

Floquet states. by the Chirikov criterion16] for the overlap of all primary
Summarizing these results, we may write for the station/€Sonances, the clas_sical pha§e space also consist; of two
ary distribution in the plateau region clearly separated regiof45]. This can be seen from Fig. 3
which shows a Poincarsurface of section of the phase
pr~const for E;<Ec, (15  Space.

The first region constitutes a connected chaotic sea which
emerges from the region of the primary nonlinear resonances
and which contains only small stable, elliptic islands. The
second phase-space region is densely filled with invariant
tori corresponding to perpetual adiabatic invaridifs]. We
see from Fig. 3 that both regions are separated by a sharp

In. orQer to eXp'a'F‘ th'.s behavior of.the quasistationary dIS_border which marks the transition from the irregular, chaotic
tribution, we plot in Fig. 2 the matrixv;. As can be seen

from the figure, for the chosen parameters the stites motion to the quasiperiodic, nearly integrable motion in the

=1 15 arestrongly mixed: Each Floquet state is region surrounding the chaotic sea.
c_ou,p.léc.i ’to all other Fl%éuet statés from this 2et and the cor- As is shown in[10], the quantization of the invariant flux
responding transition rates vary erratically witlandj. This tubes in the regular region of the phase space yields an ex-

explains why in the plateau region the stationary solution iscellent semiclassical approximation for the Floquet states

nearly constant since all rows and columns of Wenatrix and the quasienergies of the quantum system. In view of our
y L above results on the quasistationary probability distribution
sum up to nearly the same value in this range.

However, above a certain sharp threshold, which is give of the open, dissipative system, it is tempting to relate the

by j =15 for the parameters of the figure, the transition raterséxponentlal region of that distribution to the nearly inte-

strongly decrease with increasifigand k and couple only ~9rable region of the phase space. In fact, Bg=>Ec the
states with j —k|= 1. This behavior is very similar to that of quasienergies rapidly approach the mean enefgiesd one
the harmonic oscillator and explains why fpr 15 the sta- €xpects a Boltzmann distribution over the quasienergies in
tionary solutionp} behaves in a way which is similar to that this region of phase space.
of the distribution of the harmonic oscillator. On the other hand, the quasienergy spectrum for the states
corresponding to the chaotic sea shows a complicated avoid-
ing crossing structure when plotted as a function of the driv-
ing amplitude. This reflects large dipole matrix elements and
The appearance of two clearly separated regions in tha broad Fourier spectrum of these elements. Consequently,
stationary distributionpj?c can also be understood from a one expects that the chaotic sea corresponds to the plateau
simple semiclassical analysis. To this end, we first investiregion observed in the stationary distributip]’i.

and in the exponential region

procexp{—Ej/kgT} for E;>Ec. (16)

C. Comparison with the classical phase-space structure
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R e e e A IV. SUMMARY

We have studied the dynamics of open quantum systems
subjected to strong, periodic driving fields. The stationary
solution of the Pauli-type master equation which governs the
diagonal elements of the reduced density matrix in the Flo-
] quet representation has been demonstrated to differ substan-
- tially from a canonical distribution at the temperature of the
| environment: It exhibits a certain region in which a number
of Floquet states is occupied with approximately constant
] probability. This plateau region is clearly separated from an
1 exponential tail of the stationary distribution which describes
a Boltzmann-type distribution at the environmental tempera-
ture over the mean energies of the Floquet states. The num-
ber of Floquet states within the plateau region is nearly in-
dependent of the temperature but strongly depends on the

num ber of states in plateau

I ] driving amplitude.
o The essential features of the stationary solution can be
o 03 14 understood from an investigation of the classical phase-space
B structure. It has been shown that the plateau region corre-

. _ sponds to the chaotic sea which emerges from the region of
FI.G‘ 4. The nqmper c.)f Floguet states in the plateau region ,Of th?)hase space belonging to the primary nonlinear resonances.
quasistationary .d'St”bu"OpT asa function of th.e scaled d“V'.ng This chaotic sea is surrounded by a nearly integrable phase-
amplitudeg for fixed «=20. The figure shows this number as itis o\ o roqion which is densely filled with invariant flux tubes.
obtained from the full quantum calculatidorossesand compares his region which is dominated by regular motion corre-

it with the number of semiclassical Floquet states corresponding t . . ; T
the chaotic sea of the classical phase syftngles estimated by sponds to th_e_ exponential tail of the stationary distribution. A
means of Eq(17). sharp transition border separates the chaotic sea from the

nearly integrable motion and marks the transition from the

To verify this simple semiclassical picture, we study thePlateau region of the stationary distribution to its exponential
behavior of the quasistationary distribution as a function ofall: . . .
the scaled driving amplitudg. Figure 4 shows the number These results have been obtained from numerical simula-
of Floquet states in the plateau regiom?fdetermined from tlons O_f a S|mp_le, strongly nqnlmear model, namely from the
the full quantum calculatioficrosses and compares it with per|od|c§ally driven particle in a p(_)tent|al box. It must b_e
the number of semiclassical Floquet states corresponding nphasized, however, that the dichotomy of the clas$|cal
the chaotic sea of the classical phase sptiangles. The phase space as well as the general structure of the mjrix

number of semiclassical Floquet states corresponding to t describing the transition rates between Floquet states is simi-

chaotic sea is estimated as follows. First. we have deter@' for all potentials that lead to a discrete spectrum of un-

mined from the Poincarsurface of section the areéaof the _perturbgd energy eigenvalues w_hc_)se ;pacing increases with
. . . A A _ increasing energy. For strong driving fields our results thus
chaotic sea in the scaled coordinaxesp. According to the

N . . describe generic features for this class of potentials.
guantization rules derived if10], we then get for the num- 9 b

b P iclassical Fl in th ion th . We remark finally that our formulation of the problem of
mee:tz of semiclassical Floquet states In that region the esu'periodically driven open systems also allows the determina-

tion of the quanta radiated during the jumps between Floquet
o states. The frequencies of these quanta are determined by
n=-——A. (17) relation(5). The above properties of the quasistationary state
2m of the open system could thus lead to characteristic features

This relation simply expresses Weyl's rule applied to theOf the radiation spectrum.

extended phase space of the Hamiltonian system. It has al-
ready been used in Refl7] for an investigation of the
mixed regular and chaotic dynamics of a driven rotor. Note
thatA andn depend org. It is this functionn=n(8) which Financial support by the Deutsche Forschungsgemein-
is represented in Fig. 4riangles. The agreement between schaft within the Schwerpunktprogran#eitabhangige Pha

both quantities plotted in this figure nicely confirms our nomene und Methoden in Quantensystemen der Physik und
above semiclassical picture. Chemieis gratefully acknowledged.
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