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Quasistationary distributions of dissipative nonlinear quantum oscillators
in strong periodic driving fields
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The dynamics of periodically driven quantum systems coupled to a thermal environment is investigated. The
interaction of the system with the external coherent driving field is taken into account exactly by making use
of the Floquet picture. Treating the coupling to the environment within the Born-Markov approximation one
finds a Pauli-type master equation for the diagonal elements of the reduced density matrix in the Floquet
representation. The stationary solution of the latter yields a quasistationary, time-periodic density matrix which
describes the long-time behavior of the system. Taking the example of a periodically driven particle in a box,
the stationary solution is determined numerically for a wide range of driving amplitudes and temperatures. It is
found that the quasistationary distribution differs substantially from a Boltzmann-type distribution at the
temperature of the environment. For large driving fields it exhibits a plateau region describing a nearly constant
population of a certain number of Floquet states. This number of Floquet states turns out to be nearly inde-
pendent of the temperature. The plateau region is sharply separated from an exponential tail of the stationary
distribution which expresses a canonical Boltzmann-type distribution over the mean energies of the Floquet
states. These results are explained in terms of the structure of the matrix of transition rates for the dissipative
quantum system. Investigating the corresponding classical, nonlinear Hamiltonian system, one finds that in the
semiclassical range essential features of the quasistationary distribution can be understood from the structure of
the underlying classical phase space.

PACS number~s!: 05.70.Ln, 03.65.Sq, 02.50.Ga
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I. INTRODUCTION

Within the Born-Markov approximation, autonomou
open quantum systems are described by quantum dynam
semigroups with a time-independent Lindblad generator@1#.
Under quite general physical conditions such systems r
in the long-time limit to a unique stationary state, which
given by the principles of equilibrium statistical mechan
@2#. For example, requiring the condition of detailed balan
for the transition rates and some kind of ergodic prope
regarding the operators which describe the coupling of
system to its environment, one finds an equilibrium stati
ary state which is given by the Boltzmann distribution ov
the energy eigenvalues of the system.

For open quantum systems in time-varying external fie
the quantum dynamics must be described, in general, b
time-dependent generator. In the case in which the exte
driving field is strong, one expects that the long-time dyna
ics differs significantly from the equilibrium stationary stat
In this paper, we shall investigate the question of the e
tence and the basic properties of a certain quasistatio
state which governs the long-time behavior for systems
strong, time-periodic driving fields.

In our study, the interaction with the external field will b
treated exactly using the Floquet representation for tim
periodic quantum systems@3,4#, whereas the coupling to en
vironment will be taken into account in the Born-Marko
approximation. It is known that for this case the diagon
elements of the reduced density matrix in the Floquet rep
sentation obey a closed equation of motion which is forma
equivalent to a Pauli-type master equation@5–7#.
PRE 611063-651X/2000/61~5!/4883~7!/$15.00
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We shall perform analytical and numerical investigatio
of the stationary solution of the Pauli master equation fo
general class of periodically driven, nonlinear oscillato
coupled to an environment at finite temperature. Our res
reveal that a large class of Hamiltonian systems leads
unique, quasistationary density matrix which is diagonal
the Floquet representation. The structure of the quasistat
ary distribution will be discussed in detail. We shall al
study the connections to the phase flow of the correspond
classical Hamiltonian system, which shows a sharp
chotomy of quasiregular and chaotic motion.

II. MASTER EQUATION FOR OPEN QUANTUM
SYSTEMS IN STRONG DRIVING FIELDS

A. The density matrix in the Floquet representation

We consider in the following a periodically driven qua
tum system coupled to an environment at temperatureT ~for
a review, see Ref.@7#!. The coherent part of the dynamics
generated by some HamiltonianH(t) which is periodic in
time with frequencyvL , that is, we haveH(t1TL)5H(t),
whereTL52p/vL denotes the period. Usually,H(t) takes
the form H(t)5H01HI(t), where H0 is the unperturbed
system Hamiltonian andHI(t) represents a time-periodic in
teraction with an external driving field.

According to the Floquet theorem@3,4#, there exists a
basis ofTL-periodic wave functionsuj (t)5uj (t1TL), the
Floquet states, such that any solutionc(t) of the time-
dependent Schro¨dinger equation pertaining to the Hami
tonianH(t) can be represented in the form~we choose units
such that\51)
4883 ©2000 The American Physical Society
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4884 PRE 61BREUER, HUBER, AND PETRUCCIONE
c~ t !5(
j

aje
2 i« j tuj~ t !.

The quantity« j is the Floquet index or quasienergy corr
sponding to the Floquet stateuj (t). The important point to
note is that the amplitudesaj in the above representation a
independent of time.

In principle, the coupling to the environment may ta
any form. To be specific, we take this interaction to be
dipole form, that is, the relevant system operator wh
couples to the degrees of the environment is the dipole
eratorD. Such a coupling occurs, for example, in atomic
quantum optical systems where the environment could be
quantized radiation field in thermal equilibrium@1,8#. Invok-
ing the Floquet representation, one finds that the dynamic
the diagonal matrix elements

pj~ t ![^uj~ t !ur~ t !uuj~ t !& ~1!

of the reduced density operatorr(t) of the open system is
governed by the following Pauli master equation in t
strong driving limit:

d

dt
pj~ t !5(

k
$wjkpk~ t !2wk jpj~ t !%[(

k
W jkpk~ t !. ~2!

This equation may be derived directly within the densi
matrix formulation@5# or else by making use of the stocha
tic wave-function method and by investigating the associa
jump process@6#. In both cases, one uses the Born-Mark
approximation for the coupling of the reduced system to
environment, whereas the coupling to the driving field
treated exactly by invoking the Floquet representation of
time-evolution operator.

Formally, Eq.~2! represents an ordinary master equat
in the sense of classical probability theory for a stocha
jump process@9#. The quantitywk j is the rate~probability per
unit of time! for a jump from the Floquet stateuj (t) into the
Floquet stateuk(t). For dipole coupling, these rates a
given by the explicit expression@6#

wk j5(
m

wk jm5(
m

g~vk jm!N̄~vk jm!uDk jmu2. ~3!

Here, the sum is to be extended over all integersm which
label the Fourier modesDk jm of the time-periodic dipole
matrix element̂ uk(t)uDuuj (t)&,

Dk jm5E
0

TL dt

TL
e2 imvLt^uk~ t !uDuuj~ t !&. ~4!

The vk jm denote the corresponding transition frequenc
which are given though differences of quasienergies plus
teger multiples ofvL ,

vk jm5«k2« j1mvL . ~5!

Finally, g(v)5g(2v) denotes the density of modes of th
environment belonging to the frequencyv. Forv.0, N̄(v)
is the Planck distribution for the quanta of frequencyv. For
the sake of a compact notation we define
f
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N̄~v!5H ~ebv21!21 for v.0,

N̄~2v!11, for v,0,

whereb51/kBT, T is the temperature of the environmen
andkB denotes the Boltzmann constant.

B. The quasistationary solution

Any master equation of the form~2! has at least one sta
tionary solutionpj* @9#. This is due to the fact that the matri
W jk has always a left eigenvector (1,1,1, . . . ) belonging to
the eigenvalue zero. The corresponding right eigenvectorp*
then fulfills Wp* 50, and, when normalized, is a stationa
solution of the master equation.

Once we have determined a stationary distributionpj* of
the Pauli-type master equation~2!, we immediately obtain a
solutionr* (t) of the corresponding density-matrix equatio
which is diagonal in the Floquet representation and which
given in the Schro¨dinger picture by

r* ~ t !5(
j

uuj~ t !&pj* ^uj~ t !u. ~6!

This equation represents a density matrix which varies p
odically in time with a period which is equal to that of th
external driving field. For this reason the stationary solut
pj* of the Pauli-type master equation may be calledquasis-
tationary.

An important question is whether the diagonal part of a
initial density matrix converges for large times to the quas
tationary solution. For this to be the case, the stationary
lution pj* of the Pauli master equation must be unique, wh
means that the Pauli master equation must be irreducible@9#.
A similar condition is used in the study of the return
equilibrium in relaxing semigroups of autonomous op
quantum systems@2#.

For general rateswk j the determination of the quasista
tionary solutionpj* can be a difficult task. However, for a
autonomous physical system one expects that any initial s
relaxes to a state which is in thermal equilibrium with t
environment. Thus, without external driving, the stationa
solution of Eq.~2! should represent a canonical distributio
over the energy eigenvalues« j

0 of the unperturbed system
HamiltonianH0. It is instructive for the considerations be
low to recall briefly the basic arguments which lead to th
conclusion. For an autonomous system without external d
ing field, the master equation is of the same form as Eq.~2!,
where, however, the transition rates are given by

wk j
0 5g~vk j!N̄~vk j!uDk ju2.

The transition frequencies are now obtained as difference
unperturbed energy eigenvalues,vk j5«k

02« j
0 , and Dk j

5^wkuDuw j& is the dipole matrix element between the corr
sponding eigenstateswk andw j of H0. According to general
principles of statistical mechanics@9#, the stationary equilib-
rium distributionpj* of a closed physical system obeys th
condition of detailed balance which is given bywk j

0 pj*
5wjk

0 pk* . The crucial point is that the rateswk j
0 for the au-

tonomous system do not involve a sum over the indexm
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PRE 61 4885QUASISTATIONARY DISTRIBUTIONS OF . . .
which labels the Fourier components in Eq.~3!. Therefore,
the density of the modes of the environment as well as
dipole matrix element drop out when one forms the ratio

wk j
0

wjk
0

5
N̄~vk j!

N̄~vk j!11
5e2bvk j, ~7!

where we assume~without restriction! that vk j.0. As can
be seen immediately, the solutionpj* of the detailed balance
condition yields, as expected, the canonical distributionpj*
5Nexp(2b«j

0), whereN is a normalization factor. This is
the usual argument employed in statistical mechanics, d
onstrating that the system relaxes to a stationary equilibr
state which is given by the canonical distribution over t
unperturbed energy eigenvalues at the given temperatuT
of the environment.

It is interesting to observe that a similar argument app
also to another case, namely the periodically driven h
monic oscillator with system Hamiltonian,

H~ t !5
1

2m
p21

1

2
mv0

2x21lx sinvLt.

In this case one obtains@6#

Dk jm5dm,0~d j 11,kAj 111d j 21,kAj !A 1

2mv0
.

This expression shows that foru j 2kuÞ1 the rateswk j van-
ish. For u j 2ku51, however, only the termm50 in Eq. ~3!
is different from zero. This is a very specific property whi
is valid only for harmonic potentials. Thus, the dipole ope
tor couples only neighboring Floquet statesuj (t) and
uj 61(t) and the expression for the rateswk j involves only a
single Fourier component, as is the case for an autonom
system. On using the same arguments as above, we ther
get the following quasistationary distribution:

pj* 5Ne2b« j , ~8!

where« j is the quasienergy spectrum of the harmonic os
lator ~see, e.g.,@10#!. Note that the quasienergies of th
driven harmonic oscillator differ from the unperturbed en
gies just by aj-independent term. The quasienergies of
harmonic oscillator are thus equidistant for alll. Equation
~8! implies that the stationary, nonequilibrium distribution
the driven oscillator is a canonical distribution over
quasienergy states, that is, the quasistationary density m
r* (t) varies periodically in time with time-independent o
cupation probabilities of the Floquet states. A more deta
investigation of the dynamics of dissipative, periodica
driven systems with quadratic potentials can be found
Refs.@11,12#.

We now turn to the case of a driven, nonlinear oscillat
Instead of the simple relation~7!, we have, in general, the
following expression for the ratio of transition rates:
e
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wk j

wjk
5

(
m

wk jm

(
m

wjkm

5

(
m

wk jm

(
m

wjk,2m

5

(
m

g~vk jm!N̄~vk jm!uDk jmu2

(
m

g~vk jm!N̄~2vk jm!uDk jmu2
, ~9!

where we have used the relationsv jk,2m52vk j ,1m ,
g(2v)5g(v), and D jk,2m5Dk j ,1m* , which are valid by
definition.

In the case of strong driving, many Fourier modes of t
Floquet wave functions are excited with appreciable am
tude. This means thatuDk jmu2 may be appreciably differen
from zero for manym’s which label these modes. Equatio
~9! therefore shows that the ratiowk j /wjk of transition rates
differs significantly from the simple relation~7!, which is
valid in the zero driving limit. Therefore, the simple line o
reasoning leading to a stationary state given by a canon
distribution does not apply in the present case. In the n
section we shall investigate numerically the properties of
quasistationary distributionpj* of the Pauli-type maste
equation for the case of a nonlinear, strongly driven osci
tor.

III. NUMERICAL SIMULATIONS

A. Model system and numerical methods

As an example for a strongly anharmonic system, we c
sider a periodically driven particle in a potential box. Th
time-dependent Hamiltonian is given by

H~ t !52
1

2m

d2

dx2
1V~x!1lx sinvLt, ~10!

where the potentialV(x) reads

V~x!5H 0 for uxu,a,

1` for uxu.a.
~11!

Scaling space, time, and momentum coordinates as

x̂5
x

a
, t̂5vLt, p̂5

p

mavL
,

the Schro¨dinger equation corresponding to the Hamiltoni
~10! can be written as

i
1

a

d

d t̂
c5H 2

1

2a2

d2

dx̂2
1V̂~ x̂!1b x̂ sin t̂ J ,

where V̂( x̂)5V(ax̂)/ma2vL
2 is the scaled potential and w

have introduced the dimensionless parameters

a5ma2vL , b5
l

mavL
2

. ~12!
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4886 PRE 61BREUER, HUBER, AND PETRUCCIONE
The coherent part of the dynamics thus depends only u
the two dimensionless parametersa andb. The parameterb
is a dimensionless coupling constant which is proportiona
the field amplitude. The meaning of the parametera may be
seen by looking at the commutator of space and momen
coordinate,@ p̂,x̂#52 ia21. Recall that we have set\51.
The quantitya21 is thus a dimensionless, scaled Planck co
stant. The limit a→` corresponds to the classical limi
whereas small values ofa imply that quantum behavio
dominates in a certain region of the classical phase sp
@10#.

The dissipative part of the dynamics introduces two f
ther parameters, namely the density of modes and the
perature of the environment. For simplicity we chose a c
stant density of modes,g(v)5g0 . g0 determines the
relaxation time of the process but not the stationary solut
The latter only depends on the dimensionless temperatu

T̂5
kBT

vL
. ~13!

Thus, the stationary solutionpj* depends on three dimension

less parameters, namelya, b, andT̂.
The numerical determination of the stationary distributi

pj* over the Floquet states proceeds in three steps as foll
~i! Determination of the quasienergies and Floquet w

functions pertaining to the Hamiltonian~10!.
~ii ! Calculation of the Fourier componentsDk jm of the

dipole operator and determination of the matrixW of the
master equation~2!.

~iii ! Determination of the~normalized! right eigenvector
pj* of W corresponding to the eigenvector zero.

To perform step ~i! we have represented the tim
dependent Schro¨dinger equation in a finite basis consistin
of N eigenfunctions ofH0. The Floquet spectrum is dete
mined by diagonalization of the monodromy opera
U(TL,0), that is, the time-evolution operatorU(t,t0) of the
time-dependent Schro¨dinger equation taken over a period
the driving field. With the help of the Floquet states, o
evaluates the time-dependent matrix eleme
^uj (t)uDuuk(t)& of the dipole operator.

In step ~ii ! one determines the Fourier transform of t
dipole matrix elements to obtain the Fourier compone
Dk jm . We denote bymmax the number of sampling point
which are used used in the numerical Fourier tranformat
The Fourier components of the dipole matrix elements
gether with the quasienergies determined in step~i! yield the
rateswk j and the matrixW.

In step~iii ! one has to find the zero mode of the mat
W. In all cases considered the lowest eigenvalue ofW
turned out to be smaller than the other eigenvalues b
factor of at least 104. This clearly excludes the possibility o
a degenerate zero mode, and of a decomposableW matrix
@9#. In all cases we thus have a unique stationary solu
pj* .

B. Numerical results and discussion

In the following we shall represent the stationary distrib
tion pj* as a function of the mean energiesĒj which are
n

o

m

-

ce

-
m-
-

n.

s.
e

r

s

s
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-

a
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-

obtained by averaging the expectation value of the tim
dependent HamiltonianH(t) in the Floquet statesuj (t) over
a period of the external field,

Ēj5E
0

TL dt

TL
^uj~ t !uH~ t !uuj~ t !&. ~14!

We display in Fig. 1 a logarithmic plot of the stationary
distributionspj* for a fixed driving amplitude ofb50.248

and for different scaled temperatures T̂
50.5,1.0,1.5, . . . ,8.0. As can be seen from the figure, th
canonical distribution over the unperturbed energies chan
significantly for strong driving fields. The most striking fea
ture is that the stationary distributionpj* exhibits two quali-
tatively very different and clearly separated regions. In
first region we have a number of states which are popula
with an approximately constant probability. This region w
be called plateau region in the following. For increasi
mean energy the plateau region goes over to a second re
where pj* clearly decays exponentially with the mean e
ergy. A similar conclusion was found in an investigation
chaotic tunneling in a double-well potential@13#.

Figure 1 also demonstrates that the plateau region is s
rated from the exponential region by a sharp transition
some mean energyĒC which is nearly independent of th
temperature. The solid lines of Fig. 1 are obtained by a lin
fit of the numerical data in the exponential region. One fin
that the slopes of these lines are in perfect agreement
the chosen scaled temperaturesT̂ of the environment. In the

FIG. 1. Logarithmic plot of the quasistationary distributionpj*
for the open system with Hamiltonian~10! as a function of the

mean energy Ēj for different scaled temperaturesT̂
50.5,1.0,1.5, . . . ,8.0 ~symbols!. The lines represent a linear fit o
the numerical data in the exponential region, which is found to b
excellent agreement with a Boltzmann-type distribution correspo
ing to the various temperatures. The plateau region as well as

temperature independence of the mean transition energyĒC which
separates both regions are also clearly seen. The parametersa
520, b50.248,N532, andmmax52048.



ep
f t

on

is

s
is
co

i

ve
te

f

t

th
a
st

the
he
tic

s

f two
3
e

ich
ces
he
iant

harp
tic
he

ex-
tes
our
ion
the
e-

in

ates
oid-

riv-
nd
ntly,
teau

t

r-

s of

PRE 61 4887QUASISTATIONARY DISTRIBUTIONS OF . . .
exponential region the stationary distribution therefore r
resents a canonical distribution over the mean energies o
Floquet states.

Summarizing these results, we may write for the stati
ary distribution in the plateau region

pj* 'const for Ēj,ĒC , ~15!

and in the exponential region

pj* }exp$2Ēj /kBT% for Ēj.ĒC . ~16!

In order to explain this behavior of the quasistationary d
tribution, we plot in Fig. 2 the matrixwk j . As can be seen
from the figure, for the chosen parameters the statej
51, . . . ,15 are strongly mixed: Each Floquet state
coupled to all other Floquet states from this set and the
responding transition rates vary erratically withk and j. This
explains why in the plateau region the stationary solution
nearly constant since all rows and columns of theW matrix
sum up to nearly the same value in this range.

However, above a certain sharp threshold, which is gi
by j 515 for the parameters of the figure, the transition ra
strongly decrease with increasingj and k and couple only
states withu j 2ku51. This behavior is very similar to that o
the harmonic oscillator and explains why forj .15 the sta-
tionary solutionpj* behaves in a way which is similar to tha
of the distribution of the harmonic oscillator.

C. Comparison with the classical phase-space structure

The appearance of two clearly separated regions in
stationary distributionpj* can also be understood from
simple semiclassical analysis. To this end, we first inve

FIG. 2. Representation of the (N3N)-matrix wk j formed by the
various rates for the transition between the Floquet states for
Hamiltonian ~10!. The matrix elementw00 is found in the upper

corner. The parameters area520, b50.418,T̂54.5, N532, and
mmax52048.
-
he

-

-

r-

s

n
s

e

i-

gate the classical analog of the quantum system given by
Hamiltonian~10!. The classical phase flow generated by t
corresponding Hamiltonian function is known to be chao
and has been extensively studied in the literature~see, e.g.,
@14,15#!.

For strong driving fields, that is, for driving amplitude
b.bc which are larger than the amplitudebc50.0625 given
by the Chirikov criterion@16# for the overlap of all primary
resonances, the classical phase space also consists o
clearly separated regions@15#. This can be seen from Fig.
which shows a Poincare´ surface of section of the phas
space.

The first region constitutes a connected chaotic sea wh
emerges from the region of the primary nonlinear resonan
and which contains only small stable, elliptic islands. T
second phase-space region is densely filled with invar
tori corresponding to perpetual adiabatic invariants@15#. We
see from Fig. 3 that both regions are separated by a s
border which marks the transition from the irregular, chao
motion to the quasiperiodic, nearly integrable motion in t
region surrounding the chaotic sea.

As is shown in@10#, the quantization of the invariant flux
tubes in the regular region of the phase space yields an
cellent semiclassical approximation for the Floquet sta
and the quasienergies of the quantum system. In view of
above results on the quasistationary probability distribut
of the open, dissipative system, it is tempting to relate
exponential region of that distribution to the nearly int
grable region of the phase space. In fact, forĒj.ĒC the
quasienergies rapidly approach the mean energiesĒj and one
expects a Boltzmann distribution over the quasienergies
this region of phase space.

On the other hand, the quasienergy spectrum for the st
corresponding to the chaotic sea shows a complicated av
ing crossing structure when plotted as a function of the d
ing amplitude. This reflects large dipole matrix elements a
a broad Fourier spectrum of these elements. Conseque
one expects that the chaotic sea corresponds to the pla
region observed in the stationary distributionpj* .

he

FIG. 3. Poincare´ surface of section for the strongly driven pa
ticle in the box for a scaled driving amplitude ofb50.66. The
figure represents a family of solutions of the classical equation

motion in the (x̂,p̂) plane at timest50,TL ,2TL , . . . ,600TL ,
whereTL denotes the period of the driving field.
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4888 PRE 61BREUER, HUBER, AND PETRUCCIONE
To verify this simple semiclassical picture, we study t
behavior of the quasistationary distribution as a function
the scaled driving amplitudeb. Figure 4 shows the numbe
of Floquet states in the plateau region ofpj* determined from
the full quantum calculation~crosses! and compares it with
the number of semiclassical Floquet states correspondin
the chaotic sea of the classical phase space~triangles!. The
number of semiclassical Floquet states corresponding to
chaotic sea is estimated as follows. First, we have de
mined from the Poincare´ surface of section the areaA of the
chaotic sea in the scaled coordinatesx̂, p̂. According to the
quantization rules derived in@10#, we then get for the num
ber n of semiclassical Floquet states in that region the e
mate

n5
a

2p
A. ~17!

This relation simply expresses Weyl’s rule applied to t
extended phase space of the Hamiltonian system. It ha
ready been used in Ref.@17# for an investigation of the
mixed regular and chaotic dynamics of a driven rotor. N
thatA andn depend onb. It is this functionn5n(b) which
is represented in Fig. 4~triangles!. The agreement betwee
both quantities plotted in this figure nicely confirms o
above semiclassical picture.

FIG. 4. The number of Floquet states in the plateau region of
quasistationary distributionpj* as a function of the scaled drivin
amplitudeb for fixed a520. The figure shows this number as it
obtained from the full quantum calculation~crosses! and compares
it with the number of semiclassical Floquet states correspondin
the chaotic sea of the classical phase space~triangles! estimated by
means of Eq.~17!.
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IV. SUMMARY

We have studied the dynamics of open quantum syst
subjected to strong, periodic driving fields. The stationa
solution of the Pauli-type master equation which governs
diagonal elements of the reduced density matrix in the F
quet representation has been demonstrated to differ sub
tially from a canonical distribution at the temperature of t
environment: It exhibits a certain region in which a numb
of Floquet states is occupied with approximately const
probability. This plateau region is clearly separated from
exponential tail of the stationary distribution which describ
a Boltzmann-type distribution at the environmental tempe
ture over the mean energies of the Floquet states. The n
ber of Floquet states within the plateau region is nearly
dependent of the temperature but strongly depends on
driving amplitude.

The essential features of the stationary solution can
understood from an investigation of the classical phase-sp
structure. It has been shown that the plateau region co
sponds to the chaotic sea which emerges from the regio
phase space belonging to the primary nonlinear resonan
This chaotic sea is surrounded by a nearly integrable ph
space region which is densely filled with invariant flux tube
This region which is dominated by regular motion corr
sponds to the exponential tail of the stationary distribution
sharp transition border separates the chaotic sea from
nearly integrable motion and marks the transition from
plateau region of the stationary distribution to its exponen
tail.

These results have been obtained from numerical sim
tions of a simple, strongly nonlinear model, namely from t
periodically driven particle in a potential box. It must b
emphasized, however, that the dichotomy of the class
phase space as well as the general structure of the matrixwk j
describing the transition rates between Floquet states is s
lar for all potentials that lead to a discrete spectrum of u
perturbed energy eigenvalues whose spacing increases
increasing energy. For strong driving fields our results th
describe generic features for this class of potentials.

We remark finally that our formulation of the problem o
periodically driven open systems also allows the determi
tion of the quanta radiated during the jumps between Floq
states. The frequencies of these quanta are determine
relation~5!. The above properties of the quasistationary st
of the open system could thus lead to characteristic feat
of the radiation spectrum.

ACKNOWLEDGMENT

Financial support by the Deutsche Forschungsgem
schaft within the SchwerpunktprogrammZeitabhängige Pha¨-
nomene und Methoden in Quantensystemen der Physik
Chemieis gratefully acknowledged.

e

to
-

@1# C. W. Gardiner,Quantum Noise~Springer, Berlin, 1991!.
@2# R. Alicki and K. Lendi,Quantum Dynamical Semigroups an

Applications, Lecture Notes in Physics Vol. 286~Springer-
Verlag, Berlin, 1987!.
@3# Ya. B. Zeldovich, Zh. E´ksp. Teor. Fiz.51, 1492~1966! @Sov.
Phys. JETP24, 1006~1967!#.

@4# J. H. Shirley, Phys. Rev.138B, 979 ~1965!.
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